Como calcular curva base de lente

Como calcular curva base de lente?

Sobre curva base de lentes, aqui tentaremos esclarecer alguns dos segredos que não foram devidamente divulgados (principalmente em algumas escolas de ótica) para surfistas e aqueles que desejam estudar o cálculo da curva das Lentes oftálmicas com mais precisão para obter a dioptria da lente com precisão. Este tema não interessa muito aos que se dedicam às vendas, mas não podemos esquecer os profissionais que se encarregam do árduo trabalho de confecção e fabrico das lentes.

Computação ensina novos surfistas, isso é um esf. +2,00 Dior. +8,00 curva de dioptria. -6,00 diop em convexa e outra curva. O côncavo não é preciso. Esta é uma aproximação derivada de algo aprendido com a ótica geométrica das “lentes finas”, aquelas lentes cuja espessura central é teoricamente zero.

Na verdade, este cálculo só está correto se a espessura central da lente for “zero”. Como não existem lentes de espessura central “zero” na prática, tivemos que pensar um pouco mais e esclarecer por que os profissionais de laboratório usam a curva para modificar o molde, mais fraco ou mais forte, para que não haja diferença no usual 0,12 etc. ao fazer lentes

De fato, se a lente acima for feita de um cristal de índice 1,523 com uma espessura central de 3,4 mm. E suas curvas são precisas, com um paquímetro tradicional (calculado por um índice de 1,530), sua dioptria será exatamente esf. + 2,11 dioptrias. Em vez de +2,00 como se poderia pensar.

Obtém-se uma aproximação imprecisa, mas os oftalmologistas brasileiros não podem ignorar a forma correta de calcular com precisão curvas em curvas convexas até que esf seja alcançado. +2,00 é necessário. Quando não funcionou, ele modificou novamente as curvas do molde até atingir a dioptria exata.

Nada de conteúdo técnico. você não acha?

Essas diferenças ou “luzes” vistas no calibrador de contraste não são totalmente corretas e não científicas para o estudante animado e brilhante que está começando.

Por esta razão, devemos entender como exatamente a curva é calculada.

Muitas vezes, quando tentamos ensinar esses cálculos para profissionais que têm que entregar produtos quantitativos, eles acabam respondendo: “Se calculássemos cada tiro com essa fórmula, não terminaríamos o dia”. Invariavelmente, esse tipo de argumento afasta os óticos mestres da superfície de se aprofundarem nos cálculos mais precisos e depois aplicarem e usarem o “teorema das chutágoras” na maioria dos laboratórios brasileiros. Obviamente, essa afirmação não é realista, portanto, a ignorância da tecnologia superior permanece.

Para calcular com precisão as curvas usando a fórmula, os valores das curvas do laboratório óptico não são usados ​​porque foram feitos e calculados para o índice de refração original do vidro óptico antigo, que é 1,530, e não são mais usados. Este índice é usado para calcular curvas para moldes de laboratório, calibradores de contraste, esferômetros, geradores de curvas e muito mais. Se assumirmos o uso de óculos com índice de refração de 1,530 e espessura de centro igual a zero, o que não é mais possível hoje, só podemos usá-los (com uma aproximação razoável), mesmo ignorando então o fator de índice e a espessura de centro.

Os leitores podem perguntar: por que não usar os indicadores atuais de vidro óptico ou mesmo resina? Como os avanços tecnológicos produzem a cada dia novos materiais com índices diferentes, pode ser difícil escolher um deles. Hoje temos muitos índices de refração diferentes, e tudo aponta para um aumento desse número.

Conclusão: É melhor ficar em 1.530 porque máquinas, paquímetros, esferóides, matrizes, retíficas, etc. são todos baseados em 1.530 e seria impraticável alterá-los a cada novo índice lançado no mercado. Temos que escolher um índice para nosso dado, e o melhor é ficarmos com 1.530, por razões óbvias e práticas.

Notas: Com a moderna tecnologia de superfície computadorizada, os surfistas não usam esses cálculos porque os cálculos estão prontos para torná-los práticos e simples.

Deixe um comentário

O seu endereço de e-mail não será publicado.